

ASTM E985 TEST REPORT

GR2457 HCB-10 Base Shoe and PG2475 Pad and Isolator

Rendered to: R&B Wagner, Inc. 10600 W Brown Deer Rd Milwaukee, WI 53224

Report Number:

R15-06-210

Set-up Date:

06/30/2015

Test Date:

06/30/2015

Report Date:

07/02/2015

Project Identification: GR2457HCB-10 base shoe with PG2475 pad and isolator ASTM E985 Testing

Project Scope: Rice Engineering was contacted by R&B Wagner, Inc. to witness testing of their GR2457 base shoe guardrail system, specifically the amount of deflection that would occur in ¾" thick monolithic tempered glass, and 13/16" thick tempered SGP laminated glass when pulled to design loads as described in ASTM E985 "Standard Specification for Permanent Metal Railing Systems and Rails for Buildings". On June 30, 2015, Joseph Bauer of Rice Engineering witnessed testing for the three different configurations. The testing was performed on-site at the R&B Wagner facility and was conducted by Justin Wesser.

Conclusions: The monolithic glass lite was tested to a maximum deflection of 0.97" at ultimate test load (365 lbf). The allowable deflection was 2.25". The residual deflection (measured at 90 lbf) was 0.068". The allowable residual deflection was 0.45". There were no signs of deformation on the base shoe or any problems with the pad and isolators, therefore 34" monolithic glass <u>passed</u> the ASTM E985 test.

The SGP laminated glass lite was tested to a maximum deflection of 1.2513" at ultimate test load (365 lbf). The allowable deflection was 2.25". The residual deflection (measured at 90 lbf) was 0.123". The allowable residual deflection was 0.45". There were no signs of deformation on the base shoe or any problems with the pad and isolators, therefore the 13/16" SGP laminated glass <u>passed</u> the ASTM E985 test.

Prepared & Witnessed By:

JOSEPH D. BADER LUXEMBURG WI

Joseph D. Bauer, Wisconsin P.E.

Report No: R15-06-210 July 02, 2015

PO BOX 423 | BUTLER, WI | 53007 10600 W Brown Deer Road | Milwaukee, WI | 53224 PH 414.214.0444 FAX 414.214.8326

T 1/10 0 -43

Гest Туре:	Horizontal Load to 365 lbs per ASTM E985 per section 7.1.5		Submitted By:	KES	Date	07/02/15
Test Focus (Part #s):	50" Long GR2457HCB-10, 3/4" laminated with SGP interlayer (0.060"), PG2475 pad and isolator Shoe molding, 4 panel grips, with glass and unsupported sides					
Railing Type:						
Railing Specifications:	42" (TOR) No caprail. 12" C-C hole locations					
Test Method:	365 lbf load per ASTM standards Tested using ID#0328 readout, loa	d cell and string	g pot (calibrat	tion due 6,	/19/2016)	
Test Specific	ations per ASTM E985:			Results	•	
	System Calculations:	Load (lbf)		lacement	(in.)	Test
Pre Load	400 71 0	, ,	Midrail	Left	Right	AVG
	180 (lbf)	Preload	0.24	0.314	0.345	0.2997
Released Test Load	90 (lbf)	150	0.161	0.215	0.231	0.0000 0.20233333
	70 (IBI)	200	0.314	0.213	0.231	0.20233333
<u>U</u> ltimate <u>T</u> est <u>L</u> oad	365 (lbf)	250	0.521	0.664	0.691	0.6253
Deflection Spe	ecifications Per ASTM E985	300	0.772	0.932	0.946	0.8833
•	(h/24)+(1/96) = 2.25 in	UTL	1.142	1.325	1.287	1.2513
Max Deflection		RD	0.185	0.104	0.079	0.123
Residual Deflection (At RTL)	20% of MD = 0.45 in					
	NO	TES:				
Midrail at 0 lbf =1.804						
Potentiometer cannot be	zeroed, so calculations are done man	nually				
Mounted to steel plate. I	Panel grips torqued to 120 in-lbs					
75.1 degrees F, 56% hum	nidity					
	CONO	HOLONIO				
Rail meets ASTM Standa		LUSIONS:				
	ard for Residual Deflection					

Initial Setup (Middle)

Preload of 180 lbf Actual Deflection of 0.24 in

Release Test Load of 90 lbf

Ultimate Test Load of 365 lbf Actual Deflection of 1.142 in

Deflection at ULT

Residual Deflection at 90 lbf Actual Deflection of 0.185 in

Initial Setup (Left 1)

Preload of 180 lbf Actual Deflection of 0.314 in

Release Test Load of 90 lbf

Ultimate Test Load of 365 lbf Actual Deflection of 1.325 in

Deflection at ULT

Residual Deflection at 90 lbf Actual Deflection of 0.104 in

Initial Setup (Left 2)

Preload of 180 lbf Actual Deflection of 0.345 in

Release Test Load of 90 lbf

Ultimate Test Load of 365 lbf Actual Deflection of 1.287 in

Deflection at ULT

Load	Average Deflection
0	0
150	0.2023333
200	0.3736667
250	0.6253333
300	0.8833333
365	1.2513333
0	0.1226667

R & B WAGNER, INC

PO BOX 423 | BUTLER, WI | 53007 10600 W BROWN DEER ROAD | MILWAUKEE, WI | 53224 PH 414.214.0444 FAX 414.214.8326

Test Type:	Horizontal Load to 365 lbs per ASTM 985		Submitted			
	per section 7.1.5		By:	KES	Date	07/02/15
Test Focus (Part #s):	50" Long GR2457HCB-10, 3/4" laminated with SGP interlayer (0.060"), PG2475 pad and isolator					
Railing Type:	Shoe molding, 4 panel grips, with glass and unsupported sides					
Railing Specifications:	42" (TOR) No caprail. 12" C-C hole locations					
Test Method:	365 lbf load per ASTM standards Tested using ID#0328 readout, loa	nd cell and string	pot (calibrat	ion due 6/	/19/2016)	
Test Specific	ations per ASTM E985:			Results:	•	
•	System Calculations:	I 1 (11-0	Disp	lacement	(in.)	Test
D., I 1	.,	Load (lbf)	Midrail	Left	Right	AVG
<u>P</u> re <u>L</u> oad	180 (lbf)	Preload	0.426	0.445	0.461	0.4440
Released Test Load		RTL	0	0	0	0.0000
Teleuseu Test Doau	90 (lbf)	150	0.288	0.306	0.309	0.301
<u>U</u> ltimate <u>T</u> est <u>L</u> oad	267 71 2	200	0.51	1 . 700	0.553	0.5370
	365 (lbf)	250	0.71	0.789	0.788	0.7623
Deflection Spe	cifications Per ASTM E985	300	0.89	1.012	1.004	0.9687
Max Deflection	(h/24)+(1/96) = 2.25 in	UTL RD	1.116 0.064	1.302 0.043	1.299 0.057	1.2390 0.0547
Residual Deflection (At RTL)	20% of MD = 0.45 in	THE STATE OF THE S	0.001	0.013	0.037	0.031
	NO	OTES:				
Midrail at $0 \text{ lbf} = 3.319 \text{ in}$	1					
Potentiometer cannot be	zeroed, so calculations are done man	nually				
Mounted to steel plate. I	Panel grips torqued to 120 in-lbs					
75.1 degrees F, 56% hum	nidity					
	CONC	HOLONIC				
Rail meets ASTM Standa	rd for Max. Allowed Deflection	LUSIONS:				_
Kan meets ASTW Standa	rd for Residual Deflection					

Initial Setup (Middle)

Preload of 180 lbf Actual Deflection of 0.426 in

Release Test Load of 90 lbf

Ultimate Test Load of 365 lbf Actual Deflection of 1.116 in

Deflection at ULT

Residual Deflection at 90 lbf Actual Deflection of 0.064 in

Initial Setup (Left)

Preload of 180 lbf Actual Deflection of 0.445 in

Release Test Load of 90 lbf

Ultimate Test Load of 365 lbf Actual Deflection of 1.302 in

Deflection at ULT

Residual Deflection at 90 lbf Actual Deflection of 0.043 in

Initial Setup (Left 2)

Preload of 180 lbf Actual Deflection of 0.461 in

Release Test Load of 90 lbf

Ultimate Test Load of 365 lbf Actual Deflection of 1.299 in

Deflection at ULT

Residual Deflection at 90 lbf Actual Deflection of 0.057 in

•		

Load	Average Deflection
0	0
150	0.301
200	0.537
250	0.7623333
300	0.9686667
365	1.239
0	0.0546667

Master Table

Front

All Inputs should be unadjusted read outs from test	Mid	Left #1 (If Applicable)	Left #2 (If Applicable)	
Deflection Reading @ 0 lbs	1.804	2.272	2.222	
Deflection Reading @ Pre- Load	1.177	1.447	1.383	
Deflection Reading @ Released Test Load (1/2 Pre-load)	1.417	1.761	1.728	
Deflection Reading @150 lbsf	1.256	1.546	1.497	
Deflection Reading @ 200 lbsf	1.103	1.399	1.283	
Deflection Reading @ 250 lbsf	0.896	1.097	1.037	
Deflection Reading @ 300 lbsf	0.645	0.829	0.782	
Deflection Reading @ <u>U</u> Itimate Test Load	0.275	0.436	0.441	
Deflection Reading @ <u>Released Test Load (1/2 Preload)</u>	1.232	1.657	1.649	
Height of Rail (h)	42			
Length of Rail (I)	48			
Max Deflection [(h/24)+(l/96)]	2.25			
Max Residual Deflection (20% of Max)	0.45			

Back

All Inputs should be unadjusted read outs from test	Mid	Left #1 (If Applicable)	Left #2 (If Applicable)
Deflection Reading @ 0 lbs	3.319	3.477	3.426
Deflection Reading @ Pre-			
Load	2.513	2.534	2.51
Deflection Reading @			
Released Test Load (1/2 Pre-			
load)	2.939	2.979	2.971
Deflection Reading @150 lbsf	2.651	2.673	2.662
Deflection Reading @ 200 lbsf	2.429	2.431	2.418
Deflection Reading @ 250 lbsf	2.229	2.19	2.183
Deflection Reading @ 300 lbsf	2.049	1.967	1.967
Deflection Reading @ <u>U</u> ltimate <u>T</u> est <u>L</u> oad	1.823	1.677	1.672
Deflection Reading @ Released Test Load (1/2 Pre-	_		
load)	2.875	2.936	2.914